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Scaling laws at nonlinear Schrodinger defect sites
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A new family of defect solutions to the nonlinear Schrodinger equation is described. The defects have
standing wave dynamics with j concentric rings centered at the defect site =0, and a conical shape as r—0
with angle of opening ¢, . Using a phase space technique, solution trajectories having a prescribed number ()
of rings are computed along with their corresponding eigenvalue v;, and angle of opening ¢; . As in the linear
Sturm-Liouville theory, the eigenvalues are ordered so that v; _;<v;<v;,, a fact which is clearly seen from
the phase space structure. The nonlinear eigenfunctions are trajectories which lie on the basin boundary
between the domains of the attraction of the two asymptotically stable trajectories in the three dimensional
phase space. The asymptotic distribution of the eigenvalues for large j, and the angle of opening at the defect
site are both shown to have a power law form, and formulas for the power law exponents are given.

PACS number(s): 47.35.+i, 47.20.Ky, 83.10.Ji

I. INTRODUCTION

Defect solutions to nonlinear partial differential equations
arise in several physical contexts, including liquid crystals
[1], oceanography [2], transitional flows in fluids [3,4], such
as shear layers [5], surface wave patterns [2,6-9], and in a
wide range of general pattern forming systems [10]. Their
role near onset of instability, as modeled by the generic am-
plitude equation approach, has been documented, for ex-
ample, in [6,7,4]. From a mathematical point of view, a de-
fect is a topological singularity [11], which at the defect site
(r=0) has a vanishing amplitude and undefined phase. Like
the point vortex solution to the two dimensional equations of
ideal fluid flow, a defect site imposes global structure on both
the spatial profile as well as the dynamics of the surrounding
field [2,12—15]. In this paper we describe a new family of
exact defect solutions to the nonlinear Schrodinger equation
(NLS). The defects described have a singularity in the spatial
profile at =0 with an angle of opening ¢;, a characteristic
standing wave frequency A\; with a set of j concentric rings
surrounding the defect site. By viewing the problem as a
nonlinear Sturm-Liouville eigenvalue problem, we will de-
scribe a scaling theory that arises near the defect site which
governs the asymptotic distribution (large j) of the oscilla-
tion frequencies A; and the angle of opening ¢; at the defect
site.

Our focus is on the nonlinear Schrodinger (NLS) model in
two dimensions with power nonlinearity

i+ V2= |yl y=0, (1.1)

where we write the Laplacian in the polar coordinates
yee 0 19 1 7 1
Cort  rar r?oe* (1.2)

Standing wave ‘“‘ring defect” solutions are of the form:
y=expli(—ANt+mO+ 6y)]u(r), where A\>0, m>0 (integer
valued), #,=const which we take as zero without loss of
generality. This leads to a nonlinear eigenvalue problem for
the spatial structure u(7)
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u'+—u'——u+(N—u')u=0, (1.3)
r r
u~prf, r—0, p>o0, (1.4)
u~k, r—oo, (1.5)

For given values of m and s, there are two eigenvalue
parameters (N\,). The boundary condition at the origin im-
poses the relationship p=|m|, while the condition at infinity
requires either that k=0 (for solutions with [|u|?dr<), or
k=X\"* for solutions with homogeneous spatial structure at
infinity. Special solutions, called “ground state defects,”
have previously been studied by Neu [16], distinguished by
the fact that u(r) has no zeroes for r>0.

In this paper we describe a more general family of defect
solutions which we call standing wave “‘ring defects,” where
u(r) has a finite number of zeroes (j=1,2,3,...) or nodes,
and k=0. The distance between the origin and the ith node
defines the radius of the ith concentric ring around the origin.
As in [17], we will view (1.3) as a nonlinear Sturm-Liouville
eigenvalue problem in a three dimensional phase space. In
this way we will show that (1.3) has an entire family of
standing wave ring defect solutions with a prescribed num-
ber of rings (j), each with an oscillation frequency \;. Each
solution trajectory corresponds to a part of the basin bound-
ary separating the basins of attraction of two asymptotically
stable trajectories in the phase space. A numerical “‘squeez-
ing” method is used to locate these solutions and their eigen-
values to arbitrary accuracy. This is accomplished, as in [17],
not by solving for the desired solution, but by solving for
two adjacent trajectories which are simple to compute and
straddle the solution. By squeezing these trajectories arbi-
trarily close to each other, the desired solution structure is
obtained to arbitrary accuracy. We expect that the techniques
outlined here will be useful on related models such as the
dissipative Ginzburg-Landau model studied by others [12—
15].

First, we rescale (1.3)

R=\%r, (1.6)
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FIG. 1. Projected phase plane (U,V). Trajec-
tories marked 1y, v; are nonlinear eigenfunctions.
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U=\"u. (1.7)

Then we can eliminate N\ from the equations by letting
a=1/2, y=—1/s. This results in the new problem

2

1
"y _ ' . + s+1_ )
U R U R2 U—-U+U 0, (1.8)
U~vR™, R—O0, (1.9)
U~0, R—>. (1.10)

The rescaled equation has a single eigenvalue parameter v
given by

B

V= 7\(2+ms)/25‘ (111)

Our focus in this paper is on the case m =1, which implies
that the defect has a ““conical’ shape as R—0, hence we can
define an ‘““angle of opening” at the defect site R=0, labeled
¢; . We will show that there are discrete values of the eigen-
value parameter v=v; and the angle of opening ¢;, with
v, 1 <v;<v;,, and ¢; | <¢;<¢p;,; where j represents
the (integer) number of zeroes of the corresponding eigen-
function U=U, . Using the phase space technique described
in Sec. II, we will show that the asymptotic distribution of
the eigenvalues v; and angles ¢;, for large j, follows the
power law form. In addition, we propose a power law expo-
nent formula which is consistent with all of the numerical
data. To our knowledge, no such power law formulas have

been derived for nonlinear Sturm-Liouville problems.

II. PHASE SPACE STRUCTURE

We start by writing (1.8) as a first order system

Uu'=v, 2.1
V=——4~%+U—w“, (2.2)
wow
w'=1, (2.3)
with
V~v;, R—0, 2.4)
U~0, R—. (2.5)

In the three dimensional phase space (U,V,W), defect
structures satisfying the boundary conditions (2.4), (2.5) are
trajectories which start on the V axis for R=0, wind around
the W axis a prescribed number of times as R increases, then
converge to the W axis as R—0. The number of intersections
with the V axis (U =0) between the starting point and the end
point of the trajectory corresponds to the number of zeroes of
the eigenfunction.

The defects are most easily viewed projected down to the
(U,V) plane, as shown in Fig. 1. On this projected plane, it
is easy to prove that as W—oo, the system (2.1)—(2.3) has
three fixed points (V,U)=(0,0),(0,=1). By computing the
eigenvalues of the system linearized around each fixed point,
as done in [17], we can conclude that:

(1) The fixed points (0,%1) are asymptotically stable spi-
rals as W—co.

(2) The fixed point (0,0) is an unstable saddle as W-—oo.



3444 PAUL K. NEWTON AND MIKE O’CONNOR 53

FIG. 2. First three eigenfunctions. Angle of
openings ¢, ¢;, ¢, corresponding to U,, U,,
R U, are marked.

-1 p

From this structure, as shown in Fig. 1, the technique for
computing the eigenvalues ; is straightforward. We increase
v along the V axis until the trajectory switches from one
converging to the fixed point (0,1) to one converging to the
fixed point (0,—1) as W—o, Between the values of v where
the switch occurs lies an eigenvalue. The first eigenvalue,
labeled vy, is shown in Fig. 1, distinguished by the fact that
its trajectory converges to the origin without crossing the V
axis. As v is increased further, the trajectory switches back to
(0,1). From this, we can locate the value v, with its corre-
sponding trajectory having one zero. This switching process
continues indefinitely as v is increased, each switch marking
a trajectory with one more zero than the previous trajectory.

The following general conclusions can be drawn from this
phase space structure:

Proposition:

(1) There exists an infinite number of discrete eigenvalues
v; linearly ordered such that v, _; <1;<w;+1. Each integer
value j corresponds to the precise number of zeroes of the
corresponding nonlinear eigenfunction U;.

(2) The trajectories converging to the fixed point (0,0) as
W—c are the eigenfunctions of the problem (2.1)-(2.5).
They lie on the basin boundary separating the basins of at-
traction of the two fixed points (0,%1).

(3) The eigenvalue v; can be computed to arbitrary accu-
racy by “squeezing” it between the values (v,—e€v;+e)
along the V axis. The trajectory with initial data
(U,V)=(0,v,—¢€) converges to the fixed point (0,+1) if j is
even, and (0,—1) if j is odd, with j crossings of the V axis.
The trajectory with initial data (U, V)=(0,v;+ €) converges to
the fixed point (0,+1) if j is odd, and (0,—1) if j is even,
with j+1 crossings of the V axis. The eigenvalue »; can be
located by decreasing €, thereby “‘squeezing’ the true solu-
tion between two asymptotically stable trajectories.

(4) Once the eigenvalue v; and corresponding eigenfunc-
tion U; is computed, the angular opening at the defect site ¢;
can be computed via the formula ¢j=tan_1(vj). The profile
U;(r) for j=0, 1, 2 is shown in Fig. 2, where the angular
openings ¢y, ¢, ¢, are marked.

III. EIGENVALUES AND POWER LAWS

In Table I we list the computed eigenvalues v; for prob-
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lem (1.8)—(1.10) with m =1, for power nonlinearities s =2, 4,
6, 8, 10. Even powers of s are chosen so that (1.1) remains
invariant under the transformation y— — .

To clearly demonstrate the power law structure in the
data, we define

_ In[ Vj+1]—1n[Vj]

fG)= =] (3.1)
g(j)=v;j 1. (3.2)

If v;~aj* as j—o, then f(j)—u and g(j)—a. Figures 3
and 4 show plots of f(j) and g(j) vs 1/j for the data in Table
I. When plotted this way, the y intercept gives the power law

TABLE I. Eigenvalues for various s values.

s=2 s=4 s=6 s=8 s=10
vy 1.252 1.623 1.911 2.148 2.36
12} 2.416 3.675 5.020 6.544 8.27
123 3.572 6.121 9.480 13.883 19.6
12 4.726 8.921 15.230 24.657 38.2
vy 5.880 12.036 22.356 39.286 65.9
Vs 7.033 15.440 30.833 58.150 104.4
Vg 8.186 19.109 40.661 81.592 155.6
2] 9.339 23.027 51.843 109.932 221.2
Vg 10.492 27.177 64.376 143.473 303.0
vy 11.645 31.549 78.263 182.498 402.8
Vio 12.798 36.132 93.503 227.278 522.4
v 13.951 40916 110.096 278.070 663.6
Vi 15.103 45.893 128.042 335.123 828.2
Vi3 16.256 51.056 147.341 398.669 1017.9
Vig 17.409 56.399 167.993 468.970 1234.6
120 18.561 61.915 189.998 546.180 1480.0
Vi 19.714 67.600 213.357 630.5 1756.0
V7 20.866 73.448 238.068 722.3 2064.3
Vig 22.019 79.456 264.133 821.6 2406.7
Vig 23.172 85.619 291.551 928.7
Va0 24.324 91.933 320.323 1043.8
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FIG. 3. (a) f(j) vs 1/j showing power law form with u=1, s=2. (b) £(j) vs 1/j showing power law form with u=1.5, s=4. (c) f(j) vs
1/j showing power law form with u=2, s=6. (d) f(j) vs 1/j showing power law form with ©=2.5, s=8. (e) f(j) vs 1/j showing power law

form with u=3, s=10.

exponent, u and power law coefficient a. In each case, we fit
a straight line to the last three data points and extrapolate the
line to the y axis. The figures reveal the power law exponents
and coefficients shown in Table II.

Based on this data, we deduce the simple exponent for-
mula :

2(n—1) ms

M= e T a G

where n is the underlying spatial dimension for (1.1), m is
the integer valued winding number, and s is the power of the
nonlinearity. For the purposes of this paper we have (n=2,
m=1)

1 s
n(s)=5+< (3.4)

2 47

Formula (3.3) is consistent with the data and formula pro-
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FIG. 4. (a) g(j) vs 1/j showing power law form with a=1.23, s=2. (b) g(j) vs 1/j showing power law form with a=1.03, s=4. (c) g(j)
vs 1/j showing power law form with a=0.753, s=6. (d) g(j) vs 1/j showing power law form with «=0.449, s=8. (e) g(j) vs 1/j showing

power law form with «=0.241, s=10.

posed in [17] for radially symmetric standing wave solutions
to NLS, where m=0. While (3.3) is not the unigue way to
generalize the formula of [17], it is the simplest generaliza-
tion consistent with the data from Table II.

The angle of opening ¢ for j=0, 1, 2 is shown in Fig. 2.

TABLE II. Power-law exponent and coefficient for various s

As mentioned previously, it is related to v; via the formula

¢j=tan71(1}j). (3.5)

values.

s=2 ©#=1.00094(~1) a=1.23
s=4 u=1.49688(~1.5) a=1.03
s=6 #=1.98717(~2) a=0.753
s=8 n=2.48156(~2.5) a=0.449
s=10 1=2.94644(~3) a=0.241
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TABLE III. Comparison of exact vs asymptotic angle of open-
ing.

s=2 s=4 s=6 s=8 s=10
j=5 exact 1.430 1.506 1.538 1.554 1.561
asymp 1.408 1.484 1.518 1.531 1.538
j=10 exact 1.493 1.543 1.560 1.566 1.569
asymp 1.490 1.540 1558 1.564 1.567
j=15 exact 1.517 1.555 1.566 1.569 1.5701
asymp 1.5166 1.554 1.565 1.568 1.5696

For |v;|>1 we can use the asymptotic expansion [18]:

1 T 1 5
qﬁj:tan (Vj)~5_7j+0(llvj)’ (3.6)
along with (3.4) to get the result
T 1 nee
¢j~ 5 _a— J . (3.7

In Table III we compare the asymptotic and exact angle of
opening for the cases s=2, 4, 6, 8, 10, where j=5,10,15.
As can be seen, the asymptotic formula (3.7) is quite good
and improves as j gets large.

IV. DISCUSSION

The power law formulas described here are reminiscent of
certain well known features from the classical linear Sturm-
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Liouville theory. If one solves the Dirichlet eigenvalue prob-
lem on an arbitrary domain of length /, area A, or volume V,
the asymptotic eigenvalue distribution is known to be gov-
erned by the power law formulas [19]:

2
>\j~(;) 7% 4.1)
4
A~ (T)j, 4.2)
2\ 2/3
)\,~(6%) j2. 4.3)

To our knowledge, these formulas have never been gen-
eralized to nonlinear problems, and the results in this paper
represent a step in that direction.

A separate issue, outside the scope of this paper, is the
question of the stability of these solutions with respect to
small perturbations. While there are no results in this direc-
tion, we would anticipate, based on the related models, that
the defect solutions with j concentric rings with j>1 would
be unstable dynamically.
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